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Expansion for 

S U M M A R Y  
The Chapman-Enskog expansion for the solution of the Boltzmann equation has been reexamined and certain 
inconsistencies in the procedure have been pointed out. For a steady state one-dimensional Boltzmann equation, 
the expansion is modified with the help of the PLK method. Macroscopic equations up to Burnett level of approxi- 
mation are then obtained. Finally, these equations are used to examine the structure of a shock wave in a gas consisting 
of Maxwellian molecules. It is shown that new Burnett equations give solutions for all values of the Mach number. 

1. Introduction 

In order to obtain the steady state solution of the one-dimensional Boltzmann equation for 
the shock structure problem, various attempts using the Chapman-Enskog method, Grad's 
polynomial expansion and Mott-Smiths "Ansatz" method, have been made. Because of its 
simplicity and success with the strong shock structure problem, there have been efforts made 
to improve Mott-Smith's method; these have appeared in the form of the two fluid models 
of Glandsdroff, Yen, Ziering, etc. and the orthogonal polynomial expansion Of Mint'zer. 
Although Grad's Hermite polynomial expansion seems to have a mathematical basis as applied 
to the shock wave problem, its success has been limited to the case of weak shocks. Indeed, it is 
shown by Holway that Grad's expansion procedure is not convergent beyond Mach number 
1.85. 

The Chapman-Enskog expansion is usually presented as an expansion of the distribution 
function for the unsteady form of the Boltzmann equation. (Due to Hilbert's existence theorem). 
Due to the presence of the multiplicity of the time scales, one gets Euler's, Navier-Stokes 
and Burnett equations as the zero'th, 1st and 2nd approximations respectively. The higher 
approximations have not been carried out. As applied to the shock wave structure problem, 
the Navier-Stokes equations give continuous solutions for any Mach number but the Burnett 
equations do not give any solutions beyond Mach No. 2.1 (See Talbot and Sherman). Moreover, 
for the Burnett and higher levels of approximations the order of the governing equations 
increases, a feature which tends to complicate the meaning of the physical boundary conditions. 

In the present paper an effort has been made to investigate the reason for the above result 
from the Burnett equations. It is found that for time-independent Boltzmann equation the 
expansion procedure does not satisfy certain compatibility relations. As a result the Bokzmann 
equations contain terms which are actually zero. Furthermore, it is found that the increase 
in the order of the differential equation s is artificial and can be avoided by properly modifying 
the expansion procedure. The PLK method is used to find the Burnett level of Conservation 
equations and it is shown that they give continuous solutions for any Mach number. This is 
carried out for only the one-dimensional case. 

* This research was conducted under the sponsorship of the Office of Naval Research under Contract No. Nonr 
839(34), Project No. NR 061-135. The author would like to thank Dr. Martin H. Bloom for his interest in the problem. 
Thanks are also due to Mrs. W. Thorsen for carrying out the calculations and plotting the curves. The author is also 
grateful to the reviewer for many helpful comments. 
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2. Modified C-E Expansion 

The steady state Boltzmann equation can be written as: 

~1 -~x -- ( f ' f~ - f f l )gbdbded~= J ( f  f~), (1) 

where f i s  the distribution function, ~i is the molecular velocity vector, 9 is the relative speed 
of the colliding molecules, b and e are two geometric variables, f~ is the value of f with ~ 
replaced by ~i, the velocity of the second particle.f '  andf~, are the values o f f  for velocities of 
two molecules after collisions. The Chapman-Enskog expansion amounts to expanding the 
distribution function as 

f = f (o)+ ef{a) + e 2 f ( 2 )  _k - . . . .  (2) 

In addition, we shall expand the independent variable as : (The reason for doing so will become 
clear later) 

s 
x = x l ( s )  . . . .  (3 )  

where x~, x2 etc. are unknown functions to be determined later. Substituting (2) and (3) in 
(1) and equating like powers of e, we get 

j(f(o),f(o)) = 0,  (i) 

~f(o) (ii) (4) 
J(f(~ 41 ~s ' 

a(f(~ = 4, \ Os + xl --~s ] '  (iii) 

and etc., where prime over xl (s) stands for differentiation with respect to s. These are a set of 
linear singular integral equations. Comparing these with the usual C-E equation, we notice 
that the difference arises in equations for f(2), f (3) and etc. So the zero'th and first order solutions 
are similar in form to those obtainable by the ordinary expansion. As a consequence the con- 
servation equations come out to be Euler's and Navier-Stokes respectively. It may be pointed 
out that this similarity of equations (4.i) and (4.ii) or the associated conservation equations 
with the corresponding C-E equations is only formal. In the present form either equations 
(4.i) and (4.ii) or the conservation equations are valid on a different length scale. The distribution 
functions for these cases may be written as: 

f(o) _ n (27cRT)~ exp { -  [(ix - u) 2 + ~2z + ~2]I2RT} , (5) 

/(1) = f(o)[ P~ q(11) CI(C2-5RT)]  (6) k~pR T (C~-�89 2) + 5pR2 T2 

du 
p=nkT,  R=k /m ,  ,,~1) -~P  ds q ] l ) = _ ~ _ R # d T  

F l l  = ~ ds ' 

where n, u and T are taken to be the local values of the number density, the x-component of 
mean velocity and the temperature respectively. # is the coefficient of viscosity and for Max- 
weUian molecules it is proportional to the temperature T. Because of the definitions of n, u 
and T, all higher approximations contribute to the stress and heat flux only. The collision in- 
variant moments of the Boltzmann equation w i t h f = f  ~~ + f r o  lead to Navier-Stokes equations 
with "s" as the independent variable. 

In order to solve (4.iii) f o r f  (2), the right hand side of it is required to satisfy certain solubility 
conditions. These are 
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where 0i are the collision invariants m, m~l and �89 2. This gives us 

d 
ds 

d 

ds 

d 

ds 

(pu) = o, 

(7) 

d 
(pi?) + xl (s) d~ (p + pu ~) = O, 

(q(ll)+ (i) , d (~_ ~ )  u p , 1 ) + x , ( s ) ~  up+p = 0.  (8) 

In equation (8) p is the density, p the pressure, p~ 1 and q(() are the Navier-Stokes stress and heat 
flux respectively and have been defined earlier, xl(s ) is still unspecified. To the same degree 
of approximation, the ordinary Chapman-Enskog expansion leads to the Burnett equations 
and the corresponding solubility conditions for f(2) are then given as: 

1 1  
- -  ~ 0 ~  

dx 

d 
_ _  l ~ ( 1 ) •  , , , , ( i ) ~  _ O .  ( 9 )  
dx t~l T"Ull] - -  

In other words we can solve for f(2) provided equations (9) are somehow satisfied. Actually 
similar equations will have to by satisfied by v~  "(') and q]~) for the evaluation o f f  (~ Because of 
equation (9), the C-E expansion procedure becomes meaningless, as these are the expressions 
which appear in the form of stresses and heat flux in the conservation equations. Consequently, 
the Burnett equations not only contain certain terms which are actually zero but become 
meaningless. From a strict mathematical standpoint, it is the presence of these terms (which 
also increase the order of differential equations) which renders the Burnett, and thus higher 
approximation as well, more singular. In the present formulation the higher derivatives can 
be eliminated from the right hand side of (4.iii) by the use of equations (8). As a consequence 
p(~) and q]2) will not contain these higher order derivatives. 

Now without actually solving equation (4.iii) for f(2), we can find out its contribution to 
the stress and heat flux. This we will do for Maxwellian molecules only. 

Stress equation 

Multiplying equation (4.iii) by ~ and integrating over the velocity space we get 

d d (3up + pu 3) = - fipp(~ (10) d~ (~q?~ + 3upS?)+ xl (s) ~ 

where/3 = Rr/l~. 
Now using equations (8) to eliminate the derivatives of pit) and q]l), we get 

9"(1) du - x'~(s) u + P u2 = -flPP(l~ (11) 5,,11 ~ ~ ~ 

Heat f lux 

Again multiplying equation (4.iii) by ~2~1 and integrating over the velocity space, we get 

d (8uZp+5pRT+pu4)  (2) 2 (2) d ( Y R T p ( l ~ +  5u2p(1i)l +~uq(ll)) + x] (s) dss = -2 f lp(upi i  +~qi ). 

(12) 
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Using equations (8) and (11), we get 

(~,~(1) du q ) d R T \  C d R T  2RT~s  dU 
+ - = . 7pt11T)-[- ~ 5 P ~ 7  7b/' ds S 3U2 ~Ps ] -  41~jO q(12 ) 

(13) 

Equations (11) and (13) are the requisite equations determining the Burnett stress and heat 
flux respectively. If we write 

: ~(1) .& r,(2) = Pll Ul l - -Fl l  ' ql q(zl) 4-q~l 2) ' 

du q(11 ) 15 d R T  
P(11)1 = - ~ #  ds'  - -  = - ~ - #  ds ' h = C p T ,  

Cp being the specific heat at constant pressure, we get 

4 du I (  9t~du) , /27  dh 
= - ( s )  u -fiPP11 3P dss 1 5 p ds h du 

3 ,,i1 Pql = v_P ~s s 3 pds  t-x'~ 2 h 

27 15 u 2 ~  (15) 
20 + 8 h / J '  

Equations (15) and (16) are the expression for stress and heat flux up to this order of approxi- 
mation. Xl(S) in these equations is still unspecified. Its choice is subject to two restrictions, 
viz. equation (8) does not reduce to (9) and the resulting conservation equations are no more 
singular then Navier-Stokes equations ; consequently, its choice depends upon the particular 
problem we are dealing with. It may be pointed out that these restrictions do not help us 
to prescribe x~(s) uniquely. But this non-uniqueness in the choice of straining is inherent in 
the PLK method [see Van Dyke].  The best choice could be governed either by some physical 
criteria, e.g. resulting values of p(~ and q(2) should be maximum and positive or the rate of 
convergence of the asymptotic series be maximum. However, whatever value of x i (s) we choose 
which is compatible with the above requirements, the difference in the two asymptotic solutions 
should be of the order of the approximation. 

In the next section we shall use these equations to examine the structure of a shock wave. 

3. Shock-Wave Structure 

The conservation equations are 

d 
Mass: dx (PU) O, 

d 
Momentum: dx [PuzkP+Pl l ]  = O, 

Energy" d-x u + +up11+ql = 0. (17) 

The equation of state for a perfect monatomic gas is 

p = RpT.  

Pl 1 and qt are obtained in the last section. If the subscript "0" refers to free stream conditions, 
we get, after integration of equations (17) : 

pu = pot/0 , 

Pll + P-}- P u2 = Po § poU~ , (18) 

qt +uP~z +pouo (h + ~ )  = poUo ( h o + ~ )  �9 
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Non-dimensionalizing the various quantities with respect to free stream conditions as 

h u # - - :  ------- c', - - =  g,  
ho g ' Uo #o 

Spo xl(S)po 
- 17, - yt(r/) and etc., 

#oUo #oUo 

utilizing equations (15) and (16), we get 

dv I 1 9  dv-- ' (  aM~ V2g 
J dt 1 -~V dt 1 -  yl(q) s 2 _ _ +  

dg -~ -v  dv ~ __ + yi( ) g 

where F(v, g) = 1 - v  + ~ (1 -g /v) ,  
7M; 

27 v dg 
20 g dv 

2 g dv 
5vdg  

10  2 2 : 

~M~ dgJJ 

(19) 

(20) 

v + M S ( l - v )  ~, w i t h T = ~ ,  
7 7 

and M~ is the free stream Mach number. In the present paper the following two choices of 
Y'I (q) are considered : 

dyl _ 36 9 dv 
(i) dr/ 25 M~v d~l' 

dv 

(ii) dy_~ = ~v d-~ (21) 
drl 1 v d9 

9 dv 

Both of these expressions are obtained from equation (11). For these choices of y], p]2) and q]2t 
are positive throughout the shock wave structure although not necessarily maximum. Further- 
more, p]~ and q]2) vanish when p]~ and q~t)tend to zero in the two boundary equilibrium states. 
Since, for the shock wave problem, dv/dq < 0, it can be seen very easily that equations (24) 
and (25) are no more singular than the corresponding Navier-Stokes equations. The only two 
singular points are the upstream and downstream states. The former or the supersonic state 
is a node while the subsonic state in the phase plane is a saddle point. Since the qualitative 
picture of the phase plane, in the present case, comes out to be the same as that for the Navier-  
Stokes case, the reasoning of Gilbarg and Paolucci can now be extended to the present case 
to show the existence of a unique integral curve joining the singular points. Utilizing their 
scheme of integration, equations (24) and (25) have been integrated numerically for various 
Mach numbers and the results of the calculations are presented in Figures 1. These plots are 
for density and the abscissa is (q-Y1). The origin is taken to be the downstream end-- the 
starting point of calculations and no effort is made to shift the origin or stretch the scale. 
The solid line corresponds to (21.ii) while the dashed curves are the corresponding Navier-  
Stokes profiles. The other set of the curves corresponds to the other choice of y]. Figures 2 
are the plots of (Yl) vs. 7. Again the solid curve is the solution of (21.ii) and the dashed curve 
corresponds to (21.i). Finally, in Figures 3, the present solution is compared with the Mot t -  
Smith profiles. This has been achieved by shifting the origin appropriately. 

4 .  D i s c u s s i o n  

In this report the method of Chapman and Enskog for the solution of the Boltzmann equation 
is reexamined. As applied to a steady state one-dimensional problem, certain inconsistencies 
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in the use of the method are pointed out. The Burnett equations, rather the whole expansion 
procedure becomes meaningless when it is applied to a steady state problem. In order to 
remove these inconsistencies, the expansion procedure is modified by the use of the PLK 
method. To the Burnett level of approximation it is found that the governing equations are 
no more singular than the Navier-Stokes equations and so the continuous solutions exist 
for all Mach numbers. 

From the figures one can easily notice that higher order stresses and heat fluxes tend to 
thicken the shock. 

For a weak shock the various choices of Y'I (t/) (including one which blows up for higher 
Mach numbers) did not improve very much upon the corresponding Navier-Stokes solution 
other than for few points on the upstream side of the shock. For M~ = 1.2, these solution 
curves could not be distinguished from the Navier-Stokes profile. This supports the earlier 
conclusions of other investigators about the validity of the Navier-Stokes equations for the 
shock wave problem. For higher Mach numbers the choice of y'~ does influence the density 
profiles. If the maximum value of Jxl(s)[/s achieved within the shock is taken to be some 
criteria for the rate of convergence of the asymptotic series, then the solution with minimum 
Ixll/s should give a better approximation to the actual solution to the problem. Although 
the relative importance of various choices of xl(s) could be examined beforehand from equa- 
tions (21), we have made a plot of yl(t/) vs. tl (Figures 2) for both the choices of y'l. According 
to the above-mentioned criteria, the choice (21.ii) for Y't should give a better approximation 
than the other choice. Figures 3 shows a fairly good agreement with Mott-Smith's solutions. 
The relative position of the solid curve with respect to Mott-Smith's profiles is in agreement 
with other approximate solutions. This gives some support to our criteria for the choice of 
the straining. 

The application of this method to any other intermolecular potential is straightforward and 
does not lead to any conceptual difficulties. Omitting the small terms due to j(f~l)f(1)),  a 
sample calculation for hard sphere molecules was made and results do show considerable 
improvement over the Navier-Stokes solution. Two basic questions about the present method 
are left open--some physical criteria for the choice of xl(s) and how the method takes into 
account the behavior of fast particles. 
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